Packing dimension of mean porous measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dimension of Weakly Mean Porous Measures: a Probabilistic Approach

Using probabilistic ideas, we prove that if μ is a mean porous measure on R, then the packing dimension of μ is strictly smaller than n. Moreover, we give an explicit bound for the packing dimension, which is asymptotically sharp in the case of small porosity. This result was stated in [D. B. BELIAEV and S. K. SMIRNOV, “On dimension of porous measures”, Math. Ann. 323 (2002) 123-141], but the p...

متن کامل

Billingsley ’ S Packing Dimension

For a stochastic process on a finite state space, we define the notion of a packing measure based on the naturally defined cylinder sets. For any two measures ν, γ, corresponding to the same stochastic process, if F ⊆ { ω ∈ Ω : lim n log γ(cn(ω)) log ν(cn(ω)) = θ } , then we prove that Dimν(F ) = θ Dimγ(F ).

متن کامل

Sofic Mean Dimension

We introduce mean dimensions for continuous actions of countable sofic groups on compact metrizable spaces. These generalize the Gromov-LindenstraussWeiss mean dimensions for actions of countable amenable groups, and are useful for distinguishing continuous actions of countable sofic groups with infinite entropy.

متن کامل

Effective packing dimension of Π1-classes

We construct a Π1-class X that has classical packing dimension 0 and effective packing dimension 1. This implies that, unlike in the case of effective Hausdorff dimension, there is no natural correspondence principle (as defined by Lutz) for effective packing dimension. We also examine the relationship between upper box dimension and packing dimension for Π1-classes.

متن کامل

Packing Dimension, Hausdorff Dimension and Cartesian Product Sets

We show that the dimension adim introduced by R. Kaufman (1987) coincides with the packing dimension Dim, but the dimension aDim introduced by Hu and Taylor (1994) is different from the Hausdorff dimension. These results answer questions raised by Hu and Taylor. AMS Classification numbers: Primary 28A78, 28A80.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2009

ISSN: 0024-6107

DOI: 10.1112/jlms/jdp040